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1 Introduction 

This paper shines the spotlight on the mathematical formulae of resource sharing models. It 

contributes to greater transparency and comparability through a uniform mathematical representation, 

by showing generalisations and mergers as well as similarities and differences between currently used 

models. It also contains mathematical proofs for specified properties of the models. 

In Chapter 2 we consider models with a limited convergence period, at the end of which global 

emissions are allocated to countries according to population only. The Smooth Pathway Model in 

Chapter 3 calculates national pathways starting from allocated remaining national budgets. The 

Emission Probability Model in Chapter 4 determines country specific emission density functions and 

caps the emissions of individuals.  
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2 Convergence models 

All convergence models presented here start with a global pathway that meets a remaining global 

budget usually corresponding to a certain degree of global warming. Then the models break down the 

annual global emissions on country level, transforming the actual emissions in a base year (BY) into 

emissions based on a per capita allocation in a convergence year (CY) at the end of a limited 

convergence period  

2.1 Models breaking down the global pathway in a simple way 

2.1.1 Contraction & Convergence Model 

The Global Commons Institute already propounded the following Contraction & Convergence Model 

(C&C Model) in the early 1990s. This model defines the emissions of country i in the year t (𝐸𝑡
�̂�) 

recursively (cf. Meyer, No date): 

𝐸𝑡
�̂�: =

{
 
 

 
 ((1 − 𝐶�̂�) ∗

𝐸𝑡−1
�̂�

𝐸𝑡−1
+ 𝐶�̂� ∗

𝑃𝑡
𝑖

𝑃𝑡
) ∗ 𝐸𝑡, for 𝐵𝑌 + 1 ≤ 𝑡 < 𝐶𝑌

𝑃𝑡
𝑖

𝑃𝑡
∗  𝐸𝑡,  for 𝐶𝑌 ≤ 𝑡                                                                  

, 

(1) 

where 

𝐸𝑡 global emissions in the year t, 

𝑃𝑡 global population in the year t and 

𝑃𝑡
𝑖 population of country i in the year t. 

𝐶�̂� denotes the weight of the population when allocating global emissions to countries.  

The Global Commons Institute considered two specifications of 𝐶�̂�: 

 exponential (C&C-exp): Ct̂ = exp (−a (1 −
t−BY

CY−BY
)) with the parameter a > 0 to be 

determined. “The higher the value [a], the more the convergence happens towards the end of 

the convergence period, and vice-versa. Choosing a = 4 gives an even balance.” (Meyer, 

1998, p. 21) 

 linear (C&C-lin): 𝐶�̂� = 
𝑡 − 𝐵𝑌

𝐶𝑌−𝐵𝑌
. 
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2.1.2 LIMITS Model 

LIMITS, a research project funded by the EU, uses the following formula for the emissions of country 

i in the year t (𝐸𝑡
�̃�) (cf. Tavoni, et al., 2013): 

𝐸𝑡
�̃�: =  

{
 
 

 
 ((1 − 𝐶�̃�) ∗

𝐸𝐵𝑌
𝑖

𝐸𝐵𝑌
+ 𝐶�̃� ∗

𝑃𝑡
𝑖

𝑃𝑡
) ∗ 𝐸𝑡,   for 𝐵𝑌 +  1 ≤ 𝑡 < 𝐶𝑌

𝑃𝑡
𝑖

𝑃𝑡
∗  𝐸𝑡 , for 𝐶𝑌 ≤ 𝑡                                                                  

 

(2) 

𝐶�̃� denotes the weight of the population when allocating global emissions to countries. LIMITS 

considered only the linear specification of 𝐶�̃� (𝐶�̃� = 
𝑡 − 𝐵𝑌

𝐶𝑌−𝐵𝑌
).  

The LIMITS Model (LIMITS) uses formula (2) to determine emissions pathways for different regions 

of the world. 

2.1.3 Generalised C&C Model and Generalised LIMITS Model 

C&C and LIMITS consider only certain specifications of 𝐶𝑡. However, any non-decreasing weighting 

function 𝐶𝑡 that takes the value 1 in the convergence year (CY) can be used. Numerous such weighting 

functions are conceivable. Thus we obtain the Generalised Contraction & Convergence Model (G-

C&C) and the Generalised LIMITS Model (G-LIMITS). National emissions pathways with weighting 

functions that take the value 0 (or approximately 0) in the base year (BY) normally do not have a step 

after the base year. Therefore we only list the most intuitive weighting functions with this property: 

 linear (lin): 𝐶𝑡 = 
𝑡 − 𝐵𝑌

𝐶𝑌−𝐵𝑌
  (C&C-lin and LIMITS) 

 exponential (exp_a): 𝐶𝑡 = 𝑒𝑥𝑝 (−𝑎 (1 −
𝑡−𝐵𝑌

𝐶𝑌−𝐵𝑌
)) with the parameter a > 0 to be determined 

(C&C-exp) 

 convex quadratic (conv quadr): 𝐶𝑡 = (
𝑡 − 𝐵𝑌

𝐶𝑌−𝐵𝑌
)
2

 

 concave quadratic (conc quadr): 𝐶𝑡 = 1 − (1 −
𝑡 − 𝐵𝑌

𝐶𝑌−𝐵𝑌
)
2

 

 general quadratic: 𝐶𝑡 = 𝑎(𝑡 − 𝐵𝑌)
2 + 𝑏(𝑡 − 𝐵𝑌) + 𝑐, where a, b and c are parameters to be 

determined in such a way that 𝐶𝐵𝑌 =  0, 𝐶𝐶𝑌 = 1 and with a third constraint, e. g. a given 

value for the year after the base year. The linear, the convex quadratic and the concave 

quadratic specifications of 𝐶𝑡 are special cases of the general quadratic specification. 
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 cubic: 𝐶𝑡 = −2(
𝑡−𝐵𝑌

𝐶𝑌−𝐵𝑌
)
3

+ 3(
𝑡−𝐵𝑌

𝐶𝑌−𝐵𝑌
)
2

 

 convex polynomial (conv pol_n): 𝐶𝑡 = (
𝑡 − 𝐵𝑌

𝐶𝑌−𝐵𝑌
)
𝑛

, where n is a natural number 

 concave polynomial (conc pol_n): 𝐶𝑡 = 1 − (1 −
𝑡 − 𝐵𝑌

𝐶𝑌−𝐵𝑌
)
𝑛

, where n is a natural number 

The weighting functions above depend directly on the year (t). Another class of weighting functions 

is obtained by introducing the emissions in the year t (𝐸𝑡). Thus these weighting functions depend on 

the global emissions and only indirectly on the year. We only show the linear specification as an 

example: 

 linear in 𝐸𝑡 (lin_E_t): 𝐶𝑡 = 
𝐸𝐵𝑌−𝐸𝑡

𝐸𝐵𝑌−𝐸𝐶𝑌
 . 

Figure 1 depicts the trajectories of some weighting functions. 

 

Figure 1: Trajectories of the different specifications of 𝐶𝑡 

Figure 1 shows that, if n is great enough, the allocation key “population” 

- in the concave polynomial specification comes fully into effect already in the first year after 

the base year (equity, immediate climate justice).  

- in the convex polynomial specification comes into effect only in the convergence year 

(inertia).  
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2.2 The Regensburg Model 

We will present three equivalent notations of the Regensburg Model (RM) 

 as a weighting function with an annual degree of achieving the global convergence amount 

 as a straight line with a conversion factor for the reduction of emissions 

 as a recursion with an annual rate of change 

and show how they are derived from each other. Then we show the derivation of a formula for the 

national budget in the convergence period of an individual country.  

2.1.4 The RM as a weighting function 

The notation of the RM as a weighting function (cf. Sargl, et al., 2017) uses the annual degree of 

achieving the global convergence amount 𝐸𝐶𝑌 in year t 

𝑪𝒕̅̅ ̅:=  
𝑬𝑩𝒀 − 𝑬𝒕
𝑬𝑩𝒀 − 𝑬𝑪𝒀

 

as weighting factor for the national convergence amount 𝐸𝐶𝑌
𝑖  (in case of the national convergence 

amount being directly proportional to the population, it is also a per-capita weighting factor) for the 

calculation of emissions of country i in year t: 

𝑬𝒕
𝒊̅̅ ̅: =  (𝟏 − 𝑪𝒕̅̅ ̅) ∗ 𝑬𝑩𝒀

𝒊 + 𝑪𝒕̅̅ ̅ ∗  𝑬𝑪𝒀
𝒊 ,   𝐵𝑌 +  1 ≤ 𝑡 ≤ 𝐶𝑌 

 

Directly from this definition of the RM we obtain the following results: 

Remark 1 (equal proportions in all countries and the world) 

In each year t, the proportion of emissions still to be reduced and the proportion of emissions already 

reduced in relation to the emissions to be reduced altogether are equal in all countries and globally: 
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𝐸𝑡 − 𝐸𝐶𝑌
𝐸𝐵𝑌 − 𝐸𝐶𝑌

= 
𝐸𝑡
𝑖̅̅̅ − 𝐸𝐶𝑌

𝑖

𝐸𝐵𝑌
𝑖 − 𝐸𝐶𝑌

𝑖
 (=  1 − 𝐶�̅�) and 

𝐸𝐵𝑌 − 𝐸𝑡
𝐸𝐵𝑌 − 𝐸𝐶𝑌

= 
𝐸𝐵𝑌
𝑖 − 𝐸𝑡

𝑖̅̅̅

𝐸𝐵𝑌
𝑖 − 𝐸𝐶𝑌

𝑖
 (= 𝐶�̅�). 

In each year t, therefore, the degree of achieving the global convergence amount and the degree of 

achieving the national convergence amount are identical.  

Remark 2 (national convergence amounts in all countries in CY) 

In CY emissions calculated with the RM and the national convergence amount are the same in each 

country. 

Remark 3 (Uniqueness of 𝑪𝒕̅̅ ̅) 

There is only one weighting function 𝑪𝒕̅̅ ̅ so that the equation 

𝑬𝒕
𝒊 = (𝟏 − 𝑪𝒕̅̅ ̅) ∗ 𝑬𝑩𝒀

𝒊 + 𝑪𝒕̅̅ ̅ ∗  𝑬𝑪𝒀
𝒊  

holds for each country. This weighting function is 𝑪𝒕̅̅ ̅:=  
𝑬𝑩𝒀−𝑬𝒕

𝑬𝑩𝒀−𝑬𝑪𝒀
. This can be shown by summing up 

the equation across all countries, yielding an equation that can be solved for 𝑪𝒕̅̅ ̅. 

2.1.5 The RM as a straight line 

Theorem 1 (notation of the RM as a straight line) 

The emissions of each country i as a function of the global emissions are on a straight line: 

𝑬𝒕
𝒊̅̅ ̅ = (𝑬𝒕 − 𝑬𝑪𝒀) ∗ 𝒂

𝒊 + 𝑬𝑪𝒀
𝒊 ,   𝐵𝑌 + 1 ≤ 𝑡 ≤ 𝐶𝑌, 

with the conversion factor for the reduction: 𝒂𝒊: =
𝑬𝑩𝒀
𝒊 − 𝑬𝑪𝒀

𝒊

𝑬𝑩𝒀 − 𝑬𝑪𝒀
. 

Proof:  

𝐸𝑡
𝑖 = 

= 𝐸𝐵𝑌
𝑖 ∗  (1 − 𝐶�̅�)  +  𝐶�̅� ∗  𝐸𝐶𝑌

𝑖 = 

= 𝐸𝐵𝑌
𝑖 ∗ (1 −

𝐸𝐵𝑌 − 𝐸𝑡
𝐸𝐵𝑌 − 𝐸𝐶𝑌

) + (
𝐸𝐵𝑌 − 𝐸𝑡
𝐸𝐵𝑌 − 𝐸𝐶𝑌

) ∗ 𝐸𝐶𝑌
𝑖 = 

= 𝐸𝐵𝑌
𝑖 ∗ (

𝐸𝑡 − 𝐸𝐶𝑌
𝐸𝐵𝑌 − 𝐸𝐶𝑌

) + (1 −
𝐸𝑡 − 𝐸𝐶𝑌
𝐸𝐵𝑌 − 𝐸𝐶𝑌

) ∗ 𝐸𝐶𝑌
𝑖 = 
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= (𝐸𝑡 − 𝐸𝐶𝑌) ∗
𝐸𝐵𝑌
𝑖 − 𝐸𝐶𝑌

𝑖

𝐸𝐵𝑌 − 𝐸𝐶𝑌
+ 𝐸𝐶𝑌

𝑖 = 

= (𝐸𝑡 − 𝐸𝐶𝑌) ∗ 𝑎
𝑖 + 𝐸𝐶𝑌

𝑖  

  □ 

Remark 3 (stepwise approximation) 

By presenting the RM as a straight line, it becomes clear that a stepwise approximation of the global 

emission pathway to the global convergence amount is transmitted to all national emission pathways. 

Remark 4 (construction of national graphs)  

This theorem also shows that, when applying the RM, the national graph (t, 𝐸𝑡
𝑖̅̅̅)  for country i with a 

reduction amount (𝐸𝐵𝑌
𝑖 > 𝐸𝐶𝑌

𝑖 ) can be derived from the global graph  

(t, 𝐸𝑡) by changing the scaling on the ordinate and by vertically shifting the abscissa. For countries 

with a national convergence amount permitting increasing annual emissions (𝐸𝐵𝑌
𝑖 < 𝐸𝐶𝑌

𝑖 ), the global 

graph additionally needs to be reflected across the abscissa to obtain the national graph. 

Remark 5 (factor for converting reductions = proportional factor) 

Because of ∑ 𝑎𝑖𝑖 =  1 the factor for converting the reduction is also called “proportional factor”. 

Corollary 1 (constant factor for converting reductions) 

For each country i there is a constant proportional factor αi that allows converting annual global 

reductions to annual reductions of country i:  

𝐸𝑡
𝑖̅̅̅ − 𝐸𝑡−1

𝑖̅̅ ̅̅ ̅̅ = (𝐸𝑡 − 𝐸𝑡−1)  ∗  𝑎
𝑖. 

Factor 𝑎𝑖 for converting reductions can be determined by the ratio between emissions that remain to 

be reduced by country i in year t and emissions which remain to be reduced globally: 

𝑎𝑖 =
𝐸𝑡
𝑖̅̅̅ − 𝐸𝐶𝑌

𝑖

𝐸𝑡 − 𝐸𝐶𝑌
  (𝐵𝑌 ≤ 𝑡 ≤ 𝐶𝑌 − 1). 

Remark 6 (monotonicity) 

This corollary also shows that monotonicity of the global emission pathway is transferred to the 

national emission pathways. 

Corollary 2 (complete distribution of global emissions) 

The emissions determined according to the RM of all countries together sum up to the amount of 

global emissions: 
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∑𝐸𝑡 
𝑖̅̅̅̅ =  𝐸𝑡  

𝑖
 for every year 𝑡. 

Proof by using the notation of the RM as a straight line:   

∑𝐸𝑡 
𝑖̅̅̅̅ = 

𝑖
 

=∑ ((𝐸𝑡 − 𝐸𝐶𝑌) ∗ 𝑎
𝑖 + 𝐸𝐶𝑌

𝑖 )
𝑖

= 

= (𝐸𝑡 − 𝐸𝐶𝑌) ∗  ∑ 𝑎𝑖
𝑖

+∑ 𝐸𝐶𝑌
𝑖

𝑖
= 

= (𝐸𝑡 − 𝐸𝐶𝑌) ∗  1 + 𝐸𝐶𝑌 = 𝐸𝑡 

  □ 

2.1.6 The RM as a recursion 

Theorem 2 (notation of the RM as a recursion) 

We have:1 

𝑬𝒕
𝒊̅̅ ̅ = 𝑬𝒕−𝟏

𝒊̅̅ ̅̅ ̅̅ − 𝑪𝑹𝒕−𝟏 ∗ (𝑬𝒕−𝟏
𝒊̅̅ ̅̅ ̅̅ − 𝑬𝑪𝒀

𝒊 ), 𝐵𝑌 + 1 ≤ 𝑡 ≤ 𝐶𝑌  

with the annual rate of change 𝑪𝑹𝒕−𝟏: =  
𝑬𝒕−𝟏 − 𝑬𝒕
𝑬𝒕−𝟏 − 𝑬𝑪𝒀

. 

Proof: 

 𝐶𝑅𝑡−1 is well defined, because 𝐸𝑡−1 ≠ 𝐸𝐶𝑌 for 𝐵𝑌 + 1 ≤ 𝑡 ≤ 𝐶𝑌  . 

By using corollary 1 for the factor for converting reductions, we can say: 

𝐸𝑡
𝑖̅̅̅ =  

= 𝐸𝑡−1
𝑖̅̅ ̅̅ ̅̅ + (𝐸𝑡 − 𝐸𝑡−1)  ∗  𝑎

𝑖 = 

= 𝐸𝑡−1
𝑖̅̅ ̅̅ ̅̅ −

𝐸𝑡−1 − 𝐸𝑡
𝐸𝑡−1 − 𝐸𝐶𝑌

∗ (𝐸𝑡−1
𝑖̅̅ ̅̅ ̅̅ − 𝐸𝐶𝑌

𝑖 ) = 

= 𝐸𝑡−1
𝑖̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝐶𝑅𝑡−1 ∗ (𝐸𝑡−1

𝑖̅̅ ̅̅ ̅̅ − 𝐸𝐶𝑌
𝑖 ) 

                                                 
1 Alternative notation with 𝑇𝐴 ≔ 𝐸𝐶𝑌 , 𝑇𝐴

𝑖 ≔ 𝐸𝐶𝑌
𝑖  and  𝐶�̃�𝑡−1 ≔ − 𝐶𝑅𝑡−𝑡 =

𝐸𝑡−𝐸𝑡−1

𝐸𝑡−1−𝑇𝐴
:  𝐸𝑡

𝑖̅̅̅ = 𝐸𝑡−1
𝑖̅̅ ̅̅ ̅̅ + 𝐶�̃�𝑡−1 ∗ (𝐸𝑡−1

𝑖̅̅ ̅̅ ̅̅ −

𝑇𝐴𝑖). 
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  □ 

Remark 7 (identical annual rates of change) 

The notation as a recursion offers another interpretation of the RM: The annual emissions of country 

i in the year t are determined by transferring the rates of change which are derived from the global 

emission pathway, to national emission pathways. Therefore, in each year t, the national and global 

annual rates of change are identical. 

Remark 8 (national convergence amounts in all countries in the convergence year) 

From the notation of the RM as a recursion, you can see that the convergence amounts are achieved 

in all countries in the year CY, if you take into consideration that the rate of change 𝐶𝑅𝐶𝑌−1 takes 

value 1. 

2.1.7 National budget 

The emissions of country i until the year t are denominated national budget of country i until the year 

t: 

𝐵𝑡
𝑖: =∑ 𝐸𝑙

𝑖
𝑡

𝑙=𝐵𝑌+1
. 

The global emissions until the year t are denominated global budget until the year t: 

𝐵𝑡: =∑ 𝐸𝑙  (=  ∑ ∑ 𝐸𝑙
𝑖

𝑖

𝑡

𝑙=𝐵𝑌+1
 =  ∑ ∑ 𝐸𝑙

𝑖
𝑡

𝑙=𝐵𝑌+1
=∑𝐵𝑡

𝑖

𝑖
𝑖

) .
𝑡

𝑙=𝐵𝑌+1
 

Theorem 3 (national budget in the convergence period) 

For the national budget of country i in the convergence period we have: 

𝐵𝑖 = 𝐸𝐶𝑌
𝑖 ∗ (𝐶𝑌 − 𝐵𝑌) + (𝐵 − 𝐸𝐶𝑌 ∗ (𝐶𝑌 − 𝐵𝑌)) ∗  𝑎

𝑖, 

with the factor 𝑎𝑖 =
𝐸𝐵𝑌
𝑖 − 𝐸𝐶𝑌

𝑖

𝐸𝐵𝑌 − 𝐸𝐶𝑌
 for converting reductions. 

Proof: 

According to the notation of the RM as a straight line, the following applies to the emissions of 

country i in year t: 

𝐸𝑡
𝑖̅̅̅ = (𝐸𝑡 − 𝐸𝐶𝑌) ∗ 𝑎

𝑖 + 𝐸𝐶𝑌
𝑖 . 

By summing up these emissions across all years, we obtain the national budget of country i in the 
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convergence period: 

𝐵𝑖 =∑ 𝐸𝑡
𝑖̅̅̅

𝐶𝑌

𝑡=𝐵𝑌+1
= 

=∑ 𝐸𝐶𝑌
𝑖 +∑ (𝐸𝑡 − 𝐸𝐶𝑌) ∗ 𝑎

𝑖
𝐶𝑌

𝑡=𝐵𝑌+1

𝐶𝑌

𝑡=𝐵𝑌+1
 

= 𝐸𝐶𝑌
𝑖 ∗ (𝐶𝑌 − 𝐵𝑌) + (𝐵 − 𝐸𝐶𝑌 ∗ (𝐶𝑌 − 𝐵𝑌)) ∗  𝑎

𝑖 

  □ 

Remark 9 (national budget depending only on the global budget)  

This theorem also shows, that the national budget of country i in the convergence period only depends 

on – besides the national emissions of country i and the global emissions in BY and in CY – the global 

budget in the convergence period, but not on the global emissions 𝐸𝐵𝑌+1, 𝐸𝐵𝑌+2, …, 𝐸𝐶𝑌−2, 𝐸𝐶𝑌−1. 

2.3 Convertibility of the convergence models 

2.1.8 Equivalence of the Generalised C&C and LIMITS Model 

In both models, the population is frozen and the convergence amount of a country i is defined by 

𝐸𝐶𝑌
𝑖  =  

𝑃𝑖

𝑃
 ∗  𝐸𝐶𝑌. 

G-C&C is given by 

𝐸𝑡
�̂�: = ((1 − 𝐶�̂�) ∗

𝐸𝑡−1
�̂�

𝐸𝑡−1
+ 𝐶�̂� ∗

𝑃𝑖

𝑃
) ∗ 𝐸𝑡, for 𝐵𝑌 +  1 ≤ 𝑡 ≤ 𝐶𝑌 

with a weighting function 𝐶�̂� that takes the value 0 (or approximately 0) in BY and the value 1 in the 

CY. Here 𝐸𝑡
�̂� is defined recursively. 

The G-Limits is given by 

𝐸𝑡
�̃�: = ((1 − 𝐶�̃�) ∗

𝐸𝐵𝑌
𝑖

𝐸𝐵𝑌
+ 𝐶�̃� ∗

𝑃𝑖

𝑃
) ∗ 𝐸𝑡, for 𝐵𝑌 +  1 ≤ 𝑡 ≤ 𝐶𝑌 

with a weighting function 𝐶�̃� that takes the value 0 (or approximately 0) in BY and the value 1 in 

CY. 

Theorem 4 (equivalence of G-C&C and G-LIMITS) 

For any weighting function 𝐶�̂� of G-C&C there is a weighting function 𝐶�̃� for G-LIMITS, so that the 

results of G-C&C and G-LIMITS are the same.  
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For any weighting function 𝐶�̃� of G-LIMITs there is a weighting function 𝐶�̂� for G-C&C, so that the 

results of G-C&C and G-LIMITS are the same. 

Proof: 

If we know the weighting function 𝐶�̂� of G-C&C, the weighting function 𝐶�̃� of G-LIMITS is given 

by 

𝐶�̃� ≔  1 − ∏ (1 − 𝐶�̂�) for 𝐵𝑌 +  1 ≤ 𝑡 ≤ 𝐶𝑌 

𝑡

𝑙=𝐵𝑌+1

. 

We proof the first part of the theorem by aid of mathematical induction. 

Base case: For t = BY + 1 we obtain 𝐶𝐵𝑌+1̃ = 𝐶𝐵𝑌+1̂ and  

𝐸𝐵𝑌+1
�̃� : = ((1 − 𝐶𝐵𝑌+1̃) ∗

𝐸𝐵𝑌
𝑖

𝐸𝐵𝑌
+ 𝐶𝐵𝑌+1̃ ∗

𝑃𝑖

𝑃
) ∗ 𝐸𝐵𝑌+1 

= ((1 − 𝐶𝐵𝑌+1̂) ∗
𝐸𝐵𝑌
𝑖

𝐸𝐵𝑌
+ 𝐶𝐵𝑌+1̂ ∗

𝑃𝑖

𝑃
) ∗ 𝐸𝐵𝑌+1 = 𝐸𝐵𝑌+1

�̂�  

Inductive step: Assuming that if 𝐸𝑡−1
�̂� = 𝐸𝑡−1

�̃� = ((1 − 𝐶𝑡−1̃) ∗
𝐸𝐵𝑌
𝑖

𝐸𝐵𝑌
+ 𝐶𝑡−1̃ ∗

𝑃𝑖

𝑃
) ∗ 𝐸𝑡−1, we show that 

𝐸𝑡
�̂� = 𝐸𝑡

�̃�. Algebraically 

𝐸𝑡
�̂� = ((1 − 𝐶�̂�) ∗

𝐸𝑡−1
�̂�

𝐸𝑡−1
+ 𝐶�̂� ∗

𝑃𝑖

𝑃
) ∗ 𝐸𝑡, 

=

(

  
 
(1 − 𝐶�̂�) ∗

((1 − 𝐶𝑡−1̃) ∗
𝐸𝐵𝑌
𝑖

𝐸𝐵𝑌
+ 𝐶𝑡−1̃ ∗

𝑃𝑖

𝑃) ∗ 𝐸𝑡−1

𝐸𝑡−1
+ 𝐶�̂� ∗

𝑃𝑖

𝑃

)

  
 
∗ 𝐸𝑡 

= ((1 − 𝐶�̂�) ∗ ((1 − 𝐶𝑡−1̃) ∗
𝐸𝐵𝑌
𝑖

𝐸𝐵𝑌
+ 𝐶𝑡−1̃ ∗

𝑃𝑖

𝑃
) + 𝐶�̂� ∗

𝑃𝑖

𝑃
) ∗ 𝐸𝑡 

= ((1 − 𝐶�̂�) ∗ ((1 − (1 − ∏ (1 − 𝐶�̂�)

𝑡−1

𝑙=𝐵𝑌+1

)) ∗
𝐸𝐵𝑌
𝑖

𝐸𝐵𝑌
+ 𝐶𝑡−1̃ ∗

𝑃𝑖

𝑃
) + 𝐶�̂� ∗

𝑃𝑖

𝑃
) ∗ 𝐸𝑡 

= ((1 − 𝐶�̂�) ∗ (( ∏ (1 − 𝐶�̂�)

𝑡−1

𝑙=𝐵𝑌+1

) ∗
𝐸𝐵𝑌
𝑖

𝐸𝐵𝑌
+ 𝐶𝑡−1̃ ∗

𝑃𝑖

𝑃
) + 𝐶�̂� ∗

𝑃𝑖

𝑃
) ∗ 𝐸𝑡 
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= ( ∏ (1 − 𝐶�̂�)

𝑡

𝑙=𝐵𝑌+1

∗
𝐸𝐵𝑌
𝑖

𝐸𝐵𝑌
+ (1 − 𝐶�̂�) ∗  (1 − ∏ (1 − 𝐶�̂�)

𝑡−1

𝑙=𝐵𝑌+1

) ∗
𝑃𝑖

𝑃
+ 𝐶�̂� ∗

𝑃𝑖

𝑃
) ∗ 𝐸𝑡 

= ((1 − 𝐶�̃�) ∗
𝐸𝐵𝑌
𝑖

𝐸𝐵𝑌
+ ((1 − 𝐶�̂�) − (1 − 𝐶�̃�)) ∗

𝑃𝑖

𝑃
+ 𝐶�̂� ∗

𝑃𝑖

𝑃
) ∗ 𝐸𝑡 

= ((1 − 𝐶�̃�) ∗
𝐸𝐵𝑌
𝑖

𝐸𝐵𝑌
+ 𝐶�̃� ∗

𝑃𝑖

𝑃
) ∗ 𝐸𝑡 = 𝐸𝑡

�̃� 

Second part of the theorem: If we know the weighting function 𝐶�̃� of G-LIMITS, we solve the 

definition of 𝐶�̃� for 𝐶�̂� and obtain recursively the weighting function 𝐶�̂� of G-C&C: 

𝐶�̂� = 1 −
1 − 𝐶�̃�

∏ (1 − 𝐶�̂�) 
𝑡−1
𝑙=𝐵𝑌+1

 for 𝐵𝑌 +  1 ≤ 𝑡 ≤ 𝐶𝑌 

𝐶�̂� is well defined because CY is by definition the year when the convergence amount is reached. 

  □ 

2.1.9 RM as a special case of the Generalised C&C and LIMITS Model 

Theorem 5 (The RM as a special case of G-LIMITS) 

With the weighting function 

𝐶�̃� =

𝐸𝑡
𝑖̅̅̅

𝐸𝑡
−
𝐸𝐵𝑌
𝑖

𝐸𝐵𝑌
𝐸𝐶𝑌
𝑖

𝐸𝐶𝑌
−
𝐸𝐵𝑌
𝑖

𝐸𝐵𝑌

 

the results of G-LIMITS and the RM are the same. 

Proof: 

The weighting function 𝐶�̃� is obtained by transforming G-LIMITS for country i using 
𝑃𝑖

𝑃
=

𝐸𝐶𝑌
𝑖

𝐸𝐶𝑌
 and 

assuming that 𝐸𝑡
�̃� = 𝐸𝑡

𝑖̅̅̅. Thus we have to proof that we obtain the same weighting function 𝐶�̃� for any 

other country j: 

𝐸𝑡
𝑖

𝐸𝑡
−
𝐸𝐵𝑌
𝑖̅̅ ̅̅ ̅

𝐸𝐵𝑌
𝐸𝐶𝑌
𝑖

𝐸𝐶𝑌
−
𝐸𝐵𝑌
𝑖

𝐸𝐵𝑌

=

𝐸𝑡
𝑗

𝐸𝑡
−
𝐸𝐵𝑌
𝑗̅̅ ̅̅ ̅

𝐸𝐵𝑌

𝐸𝐶𝑌
𝑗

𝐸𝐶𝑌
−
𝐸𝐵𝑌
𝑗

𝐸𝐵𝑌
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𝐸𝑡
𝑖̅̅̅ ∗ 𝐸𝐵𝑌 − 𝐸𝐵𝑌

𝑖 ∗ 𝐸𝑡
𝐸𝑡 ∗ 𝐸𝐵𝑌

∗
𝐸𝐶𝑌 ∗ 𝐸𝐵𝑌

𝐸𝐶𝑌
𝑖 ∗ 𝐸𝐵𝑌 − 𝐸𝐵𝑌

𝑖 ∗ 𝐸𝐶𝑌
 =

𝐸𝑡
𝑗̅̅ ̅ ∗ 𝐸𝐵𝑌 − 𝐸𝐵𝑌

𝑗
∗ 𝐸𝑡

𝐸𝑡 ∗ 𝐸𝐵𝑌
∗

𝐸𝐶𝑌 ∗ 𝐸𝐵𝑌

𝐸𝐶𝑌
𝑗
∗ 𝐸𝐵𝑌 − 𝐸𝐵𝑌

𝑗
∗ 𝐸𝐶𝑌

  

0 = (𝐸𝑡
𝑖̅̅̅ ∗ 𝐸𝐵𝑌 − 𝐸𝐵𝑌

𝑖 ∗ 𝐸𝑡) ∗ (𝐸𝐶𝑌
𝑗
∗ 𝐸𝐵𝑌 − 𝐸𝐵𝑌

𝑗
∗ 𝐸𝐶𝑌) 

−(𝐸𝑡
𝑗̅̅ ̅ ∗ 𝐸𝐵𝑌 − 𝐸𝐵𝑌

𝑗
∗  𝐸𝑡) ∗ (𝐸𝐶𝑌

𝑖 ∗ 𝐸𝐵𝑌 − 𝐸𝐵𝑌
𝑖 ∗ 𝐸𝐶𝑌). 

Since 𝐸𝑡
𝑖̅̅̅ and 𝐸𝑡

𝑗̅̅ ̅ can be seen as a function of 𝐸𝑡 whose images are on a straight line (Theorem 1), the 

right side of this equation can be seen as a function of 𝐸𝑡 whose image is on a straight line. Therefore, 

it is sufficient to proof that two points of the image are 0. These two points are obviously 𝐸𝐵𝑌 and 

𝐸𝐶𝑌. 

  □ 

Remark 10 (The RM as a special case of G-C&C) 

Since the results of G-LIMITS can be obtained with G-C&C using an appropriate weighting function 

(theorem 4), The RM is also a special case of G-C&C. 

2.4 Implicit weighting of the population in convergence models 

Each convergence model allocates a country i until the year t a national budget that can be considered 

as a weighting of the two extreme allocations “emissions in the past” and “frozen population”: 

𝐵𝑡
𝑖 = ((1 − �̌�𝑡

𝑖) ∗
𝐸𝐵𝑌
𝑖

𝐸𝐵𝑌
+ �̌�𝑡

𝑖 ∗
𝑃𝑖

𝑃
) ∗ 𝐵𝑡 

(3) 

 

Theorem 6 (Identical weighting of the population in all countries)  

If the population is frozen each convergence model leads to the same weighting of the population in 

each country i: �̌�𝑡
𝑖  =  �̌�𝑡. 

Proof: 

We proof this theorem for the G-LIMITS by aid of mathematical induction. The rest follows from 

the equivalence of G-C&C and G-LIMITS (theorem 4) and the fact that the RM is a special case of 

G-LIMITS (theorem 5). 

Base case: For t = BY + 1 the national budget of country i until the year BY + 1 is 𝐸𝐵𝑌+1
𝑖  and the global 

budget is 𝐸𝐵𝑌+1. By comparing equation (2) with equation (3) we obtain �̌�𝐵𝑌+1
𝑖  =  𝐶𝐵𝑌+1̃. 

Inductive step: Assuming that if �̌�𝑡−1
𝑖  =  �̌�𝑡−1 for each country i we show that �̌�𝑡

𝑖  =  �̌�𝑡. 
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For the national budget of each country i until the year t we obtain 

𝐵𝑡
𝑖 = 𝐸𝑡

𝑖 + 𝐵𝑡−1
𝑖 = 𝐸𝑡

𝑖 + ((1 − �̌�𝑡−1
𝑖 ) ∗

𝐸𝐵𝑌
𝑖

𝐸𝐵𝑌
+ �̌�𝑡−1

𝑖 ∗
𝑃𝑖

𝑃
) ∗ 𝐵𝑡−1= 

= ((1 − 𝐶�̃�) ∗
𝐸𝐵𝑌
𝑖

𝐸𝐵𝑌
+ 𝐶�̃� ∗

𝑃𝑖

𝑃
) ∗ 𝐸𝑡 + ((1 − �̌�𝑡−1) ∗

𝐸𝐵𝑌
𝑖

𝐸𝐵𝑌
+ �̌�𝑡−1 ∗

𝑃𝑖

𝑃
) ∗ 𝐵𝑡−1= 

=(𝐸𝑡 + 𝐵𝑡−1 − 𝐶�̃� ∗ 𝐸𝑡 + �̌�𝑡−1 ∗ 𝐵𝑡−1) ∗
𝐸𝐵𝑌
𝑖

𝐸𝐵𝑌
+ (𝐶�̃� ∗ 𝐸𝑡 + �̌�𝑡−1 ∗ 𝐵𝑡−1)*

𝑃𝑖

𝑃
. 

We define �̌�𝑡 =
𝐶�̃�∗𝐸𝑡+�̌�𝑡−1∗𝐵𝑡−1

𝐵𝑡
 and obtain 

𝐵𝑡
𝑖 = (𝐵𝑡 − �̌�𝑡 ∗ 𝐵𝑡) ∗

𝐸𝐵𝑌
𝑖

𝐸𝐵𝑌
+ (�̌�𝑡 ∗ 𝐵𝑡)*

𝑃𝑖

𝑃
 = ((1 − �̌�𝑡) ∗

𝐸𝐵𝑌
𝑖

𝐸𝐵𝑌
+ �̌�𝑡 ∗

𝑃𝑖

𝑃
) ∗ 𝐵𝑡. 

  □ 

2.5 Common but Differentiated Convergence Model 

The Common but Differentiated Convergence Model is described in (cf. Höhne, et al., 2006). This 

source does not contain any formulae, so the formulae presented here are our interpretation of the 

description of the CDC model. 

First a threshold 𝑇𝐻𝑡 in the year t is defined, which decreases if the global emissions decrease: 

𝑇𝐻𝑡 ≔
𝐸𝑡

𝑃𝑡
∗ 𝑃𝑇, 

where 𝑃𝑇 is a given percentage, e. g. 0.95. If the average emissions of country i in the year t in a 

business as usual scenario (
𝐸𝑡
𝑖_𝑏𝑎𝑢

𝑃𝑡
𝑖 ) are below or equal to the threshold, i. e. 

𝐸𝑡
𝑖_𝑏𝑎𝑢

𝑃𝑡
𝑖 ≤ 𝑇𝐻𝑡, the country 

is allocated emissions according to the business as usual scenario and we define 

𝐸𝑡
𝑖 ≔ 𝐸𝑡

𝑖_𝑏𝑎𝑢. 

Otherwise, if the average emissions of country i in the year t in the business as usual scenario are 

above the threshold (
𝐸𝑡
𝑖_𝑏𝑎𝑢

𝑃𝑡
𝑖 > 𝑇𝐻𝑡), the country is allocated emissions according to the C&C formula 

and we define 

𝐸𝑡
𝑖 ≔ ((1 − 𝐶�̂�) ∗

𝐸𝑡−1
𝑖

𝐸𝑡−1
𝑜𝑇𝐻_𝑡 + 𝐶�̂� ∗

𝑃𝑡
𝑖

𝑃𝑡
𝑜𝑇𝐻) ∗ 𝐸𝑡

𝑜𝑇𝐻, 

where  

𝐶�̂�  weighting of per capita emissions in the year t, 
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𝐸𝑡
𝑜𝑇𝐻  remaining emissions in the year t for the countries over the threshold in the year t, i. e. 

𝐸𝑡
𝑜𝑇𝐻 = 𝐸𝑡 − ∑ 𝐸𝑡

𝑖

𝑖

if  
𝐸𝑡
𝑖_𝑏𝑎𝑢

𝑃𝑡
𝑖  ≤ 𝑇𝐻𝑡

 , 

𝐸𝑡−1
𝑜𝑇𝐻_𝑡  emissions in the year t-1 of the countries over the threshold in the year t, i. e. 

𝐸𝑡−1
𝑜𝑇𝐻_𝑡 = ∑ 𝐸𝑡−1

𝑖

𝑖

if  
𝐸𝑡
𝑖_𝑏𝑎𝑢

𝑃𝑡
𝑖  > 𝑇𝐻𝑡 

 and 

𝑃𝑡
𝑜𝑇𝐻  population in the year t of the countries over the threshold in the year t, i. e. 

𝑃𝑡
𝑜𝑇𝐻 = ∑ 𝑃𝑡

𝑖

𝑖

if  
𝐸𝑡
𝑖_𝑏𝑎𝑢

𝑃𝑡
𝑖  > 𝑇𝐻𝑡 

. 

Remark: Obviously the equation  

𝐸𝑡
𝑜𝑇𝐻 = ∑ 𝐸𝑡

𝑖

𝑖

if  
𝐸𝑡
𝑖_𝑏𝑎𝑢

𝑃𝑡
𝑖  > 𝑇𝐻𝑡 

 

holds, but this equation cannot be used to define 𝐸𝑡
𝑜𝑇𝐻, because 𝐸𝑡

𝑖 is defined with the help of 𝐸𝑡
𝑜𝑇𝐻. 
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3 Smooth Pathway Model 

3.1 Smooth Pathway Model 

In the Classical Smooth Pathway Model (CSPM) for the emission power, i. e. the derivative of 

emissions with respect to time or the emissions per unit of time, of country i at a point of time 𝑧 ≥

𝐵𝐽 + 1 the following function is used (cf. Raupach, et al., 2014): 

�̇�𝑖(𝑧)  =  �̇�𝐵𝑌+1
𝑖 (1 + (𝑟𝑖 +𝑚𝑖)(𝑧 − 𝐵𝑌 − 1))𝑒−𝑚

𝑖(𝑧−𝐵𝑌−1), (4) 

where 

�̇�𝐵𝑌+1
𝑖   emission power of country i at the end of the base year, 

𝑟𝑖  change rate of the emission power of country i at the end of the base year 

(
𝑑�̇�𝑖

𝑑𝑧
(𝐵𝑌 + 1) �̇�𝑖(𝐵𝑌 + 1)⁄ = 𝑟𝑖) and 

𝑚𝑖  the mitigation rate (or the decay parameter) of country i. 

The mitigation rate 𝑚𝑖 is determined such that the allocated remaining budget of country i (𝑅𝐵𝑖) is 

met: 

∫ �̇�𝑖(𝑧) 𝑑𝑧 =  𝑅𝐵𝑖.
∞

𝐵𝑌+1

 

Thus, we obtain 

∫ �̇�𝑖(𝑧) 𝑑𝑧 = 
∞

𝐵𝑌+1

 

= ∫ �̇�𝐵𝑌+1
𝑖 (1 + (𝑟𝑖 +𝑚𝑖)(𝑧 − 𝐵𝑌 − 1))𝑒−𝑚

𝑖(𝑧−𝐵𝑌−1) 𝑑𝑧 = 
∞

𝐵𝑌+1

 

= �̇�𝐵𝑌+1
𝑖 ∫ 𝑒−𝑚

𝑖(𝑧−𝐵𝑌−1) 𝑑𝑧 + �̇�𝐵𝑌+1
𝑖 (𝑟𝑖 +𝑚𝑖)∫ (𝑧 − 𝐵𝑌 − 1)𝑒−𝑚

𝑖(𝑧−𝐵𝑌−1) 𝑑𝑧
∞

𝐵𝑌+1

 = 
∞

𝐵𝑌+1

 

= �̇�𝐵𝑌+1
𝑖 [

−1

𝑚𝑖
𝑒−𝑚

𝑖(𝑧−𝐵𝑌−1)]
𝑧=𝐵𝑌+1

𝑧=∞

 

+�̇�𝐵𝑌+1
𝑖 (𝑟𝑖 +𝑚𝑖) [

−(𝑧 − 𝐵𝑌 − 1)

𝑚𝑖
𝑒−𝑚

𝑖(𝑧−𝐵𝑌−1) −
1

(𝑚𝑖)2
𝑒−𝑚

𝑖(𝑧−𝐵𝑌−1)]
𝑧=𝐵𝑌+1

𝑧=∞

 

= �̇�𝐵𝑌+1
𝑖 [

1

𝑚𝑖
] + �̇�𝐵𝑌+1

𝑖 (𝑟𝑖 +𝑚𝑖) [
1

(𝑚𝑖)2
] = 𝑅𝐵𝑖. 
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With the time 𝑇𝑖 = 
𝑅𝐵𝑖

�̇�𝐵𝑌+1
𝑖  defined by the remaining budget of country i and the emission power of 

country i at the end of the base year we obtain 

𝑇𝑖(𝑚𝑖)
2
− 2𝑚𝑖 − 𝑟𝑖 = 0. 

Thus, if 𝑟𝑖 > − 1/𝑇𝑖, the mitigation rate 𝑚𝑖 is given by 

𝑚𝑖  =  
1 + √1 + 𝑟𝑖𝑇𝑖

𝑇𝑖
, 

There is otherwise no solution for the mitigation rate 𝑚𝑖. In this rare case a simple exponential decay 

function is used:  

�̇�𝑖(𝑧)  =  �̇�𝐵𝑌+1
𝑖 𝑒−𝑚

𝑖(𝑧−𝐵𝑌−1). 

Since we are more interested in the emissions of country i in the year t (𝐸𝑡
𝑖) than in the emission power 

at a point of time z, we integrate equation (4) and obtain: 

𝐸𝑡
𝑖 = ∫ �̇�𝑖(𝑧) 𝑑𝑧

𝑡+1

𝑡

= 

−�̇�𝐵𝑌+1
𝑖

𝑒−𝑚
𝑖(𝑡−𝐵𝑌)

(𝑚𝑖)2
[(𝑟𝑖𝑚𝑖 + (𝑚𝑖)

2
) (𝑡 − 𝐵𝑌) + 2𝑚𝑖+𝑟𝑖] 

+�̇�𝐵𝑌+1
𝑖

𝑒−𝑚
𝑖(𝑡−𝐵𝑌−1)

(𝑚𝑖)2
[(𝑟𝑖𝑚𝑖 + (𝑚𝑖)

2
) (𝑡 − 𝐵𝑌 − 1) + 2𝑚𝑖 + 𝑟𝑖]. 

Supplementary information containing mathematical details on the properties of the formula in 

equation (4) can be retrieved from http://www.nature.com/nclimate/journal/v4/n10/ 

extref/nclimate2384-s1.pdf. 

3.2 Generalised Smooth Pathway Model 

In order to allow for negative emission we generalise equation (4) using the following function for 

the emission power, i. e. the derivative of emissions with respect to time or the emissions per unit of 

time, of country i at a point of time 𝑧 ≥ 𝐵𝐽 + 1: 

�̇�𝑖(𝑧)  =  𝑝∞ + (𝑝0 + 𝑝1(𝑧 − 𝐵𝑌 − 1)) 𝑒
−𝑝2(𝑧−𝐵𝑌−1), (5) 

where 

the parameter 𝑝∞ is the emission power at infinity and the parameters 𝑝0, 𝑝1 and 𝑝2 are determined 

in a way that the following constraints hold 

http://www.nature.com/nclimate/journal/v4/n10/extref/nclimate2384-s1.pdf
http://www.nature.com/nclimate/journal/v4/n10/extref/nclimate2384-s1.pdf
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(1) �̇�𝑖(𝐵𝑌 + 1) = �̇�𝐵𝑌+1
𝑖 , 

(2)  
𝑑�̇�𝑖

𝑑𝑧
(𝐵𝑌 + 1) �̇�𝑖(𝐵𝑌 + 1)⁄ = 𝑟𝑖 

(3)  ∫ �̇�𝑖(𝑧) 𝑑𝑧 = 
2101

𝐵𝑌+1
𝑅𝐵𝑖 

with 

�̇�𝐵𝑌+1
𝑖   emission power of country i at the end of the base year, 

𝑟𝑖  change rate of the emission power of country i at the end of the base year, 

𝑅𝐵𝑖 remaining budget of country i in the period starting at the end of the base year and ending in 

at the end of the year 2100. 

The first constraint leads to 𝑝0 = �̇�𝐵𝑌+1
𝑖 − 𝑝∞.  

The second constraint leads to 𝑝1 = �̇�𝐵𝑌+1
𝑖 𝑟 + (�̇�𝐵𝑌+1

𝑖 − 𝑝∞)𝑝2. 

The third constraint determines 𝑝2. 

The emissions of country i in the year t (𝐸𝑡
𝑖) are obtained by integrating equation (5): 

𝐸𝑡
𝑖 = ∫ �̇�𝑖(𝑧) 𝑑𝑧

𝑡+1

𝑡

= 

[𝑝∞(𝑧 − 𝐵𝑌 − 1) −
𝑝0

𝑝2
𝑒−𝑝2(𝑧−𝐵𝑌−1) −

𝑝1(𝑧−𝐵𝑌−1)

𝑝2
𝑒−𝑝2(𝑧−𝐵𝑌−1) −

𝑝1

𝑝2
2 𝑒

−𝑝2(𝑧−𝐵𝑌−1)]
𝑧=𝑡

𝑧=𝑡+1

. 
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4 Emission Probability Model 

Chakravarty et al. (cf. Chakravarty, et al., 2009) described three steps to obtaining and cutting an 

emission probability density function (PDF) starting with the points of a Lorenz curve. We hence 

summarize how to obtain a Lorenz Curve from a PDF in Chapter 4.1, show the results for a gamma 

PDF in Chapter 4.2 and describe the Emission Probability Model (EPM) in Chapter 4.3. 

4.1 General case: The Lorenz Curve obtained from a PDF 

Let f be an income PDF. 

Then 

 the cumulative population share x is given by the cumulative distribution function (CDF) F, 

i. e. the probability of an income equal to z or less is 𝑥 = 𝐹(𝑧)  =  ∫ 𝑓(𝑡) 𝑑𝑡
𝑧

−∞
 

 the cumulative income share y is given by 𝑦 =   
∫ 𝑡 𝑓(𝑡) 𝑑𝑡
𝑧
−∞

∫ 𝑡 𝑓(𝑡) 𝑑𝑡
∞
−∞

 

∫ 𝑡 𝑓(𝑡) 𝑑𝑡
𝑧

−∞
: average income of the persons with an income equal to z or less 

∫ 𝑡 𝑓(𝑡) 𝑑𝑡
∞

−∞
: average income of the population 

Thus a parametric representation of the Lorenz curve �̅� is given by 

�̅�(𝑧) = (

𝑥 =  𝐹(𝑧)

𝑦 =   
∫ 𝑡 𝑓(𝑡) 𝑑𝑡
𝑧

−∞

∫ 𝑡 𝑓(𝑡) 𝑑𝑡
∞

−∞

) (6) 

If the inverse function 𝐹−1 of the CDF F exists, the Lorenz curve L is directly given by 

y = L(x) =  
∫ t f(t) dt
𝐹−1(x)

−∞

∫ t f(t) dt
∞

−∞

. (7) 

Substituting 𝑡 =  𝐹−1(�̌�) yields 
𝑑𝑡

𝑑�̌�
= (𝐹−1)′(�̌�) =

1

𝐹′(𝐹−1(�̌�))
=

1

𝑓(𝐹−1(�̌�))
 and the Lorenz curve can be 

written as 

y = L(x) =  
∫ F−1
x

0
(ť)dť

∫ F−1
1

0
(ť)dť

. (8) 

Theorem 7 (Scaling) 

The Lorenz curve is independent of the scaling of the z-axis. 

Proof: With a scaling factor s ≠ 0 the scaled PDF 𝑓 ̃for a PDF f is given by  
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𝑓(�̃�) = 𝑠 𝑓(𝑠�̃�). 

For the CDF �̃� we obtain 

�̃�(�̃�) = ∫ 𝑓(�̃�) 𝑑�̃�
𝑧

−∞

= 𝑠∫ 𝑓(𝑠�̃�)
𝑧

−∞

𝑑�̃� = ∫ 𝑓(𝑡)𝑑𝑡 = 𝐹(𝑠�̃�
𝑠𝑧

−∞

). 

Thus �̃�−1, the inverse function of the CDF �̃�, is given by  

�̃�−1 =
1

𝑠
 𝐹−1. 

With the help of the representation (8). of the Lorenz curve we see that, the Lorenz curve from the 

PDF f and the PDF 𝑓 are the same. 

4.2 Special case: The Lorenz Curve obtained from a gamma probability 

distribution 

In general, the evaluation of the integrals in equation (1) or (2) can cause trouble. However if Z is a 

gamma distributed random variable all this work can be done by a spreadsheet programme, such as 

EXCEL. 

Let Z be a gamma distributed random variable. Then the PDF g is given by 

𝑔(𝑧; 𝑎, 𝑏)  =  {

0                            for z < 0
1

𝑏𝑎Γ(𝑎)
𝑧𝑎−1𝑒−

𝑧
𝑏 for 𝑧 ≥ 0 

with parameters a, b > 0 and Γ(𝑎) = ∫ 𝑧𝑎−1𝑒−𝑧
∞

0
𝑑𝑧. 

The CDF is denoted by 

𝐺(𝑧; 𝑎, 𝑏) =  ∫ 𝑔(𝑡;  𝑎, 𝑏) 𝑑𝑡
𝑧

0

= ∫
1

𝑏𝑎Γ(𝑎)
𝑡𝑎−1𝑒−

𝑡
𝑏

𝑧

0

𝑑𝑡 

Since Γ(𝑎 + 1)  =  𝑎 Γ(𝑎),  the equation 𝑡 𝑔(𝑡; 𝑎, 𝑏) =  𝑎𝑏 𝑔(𝑡; 𝑎 + 1, 𝑏) holds. Thus 

 the expected value (or mean) of Z is given by 

𝐸[𝑍]  =  ∫ 𝑡 
∞

0

𝑔(𝑡; 𝑎, 𝑏) 𝑑𝑡 =  𝑎𝑏 ∫ 𝑔(𝑡; 𝑎 + 1, 𝑏)𝑑𝑡 =
∞

0

𝑎𝑏 

and  

 using the representation (7). the Lorenz curve is given by 
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𝐿(𝑥) =  
∫ 𝑡 𝑔(𝑡; 𝑎, 𝑏) 𝑑𝑡
𝐺−1(𝑥;𝑎,𝑏)

0

∫ 𝑡 𝑔(𝑡, 𝑎, 𝑏) 𝑑𝑡
∞

0

 =  
𝑎𝑏 ∫ 𝑔(𝑡; 𝑎 + 1, 𝑏) 𝑑𝑡

𝐺−1(𝑥;𝑎,𝑏)

0

𝑎𝑏
= 𝐺(𝐺−1(𝑥; 𝑎, 𝑏); 𝑎 + 1, 𝑏). 

Scaling 

With a scaling factor s ≠ 0 we easily find  

�̃�(�̃�; 𝑎, 𝑏) = 𝑠 𝑔(𝑠�̃�; 𝑎, 𝑏) = 𝑔(�̃�; 𝑎,
𝑏

𝑠
) 

This equation shows that the scaling of a gamma distribution with parameters a, b leads to another 

gamma distribution with parameters a, 
𝑏

𝑠
. Since the Lorenz curve does not depend on scaling, the 

Lorenz curve must be independent of the parameter b. 

4.3 Description of the EPM 

In a base year let there be (𝑥𝑗
𝑖 , 𝑦𝑗

𝑖) points of the Lorenz curve �̌�𝑖 of country i, i. e. 𝑦𝑗
𝑖 = �̌�𝑖  (𝑥𝑗

𝑖). 

In the first step, an income PDF 𝑓𝑖(𝑧; 𝑝𝑖) for each country i is determined. For this purpose the 

parameters 𝑝𝑖 are estimated by adapting the Lorenz curves 𝐿𝑖(𝑧; 𝑝𝑖) with a least square fit: 

min𝑝𝑖  {∑ (𝐿𝑖(𝑥𝑗
𝑖; 𝑝𝑖) − 𝑦𝑗

𝑖)
2

𝑗 }. 

In the second step, for each country i an emission PDF 𝑓𝑖 is obtained by scaling the income PDF 𝑓𝑖 . 

𝑓𝑖(�̃�; 𝑝𝑖) =  𝑠𝑖 ∗ 𝑓𝑖(𝑠𝑖 ∗ �̃�; 𝑝𝑖) 

with the scaling factor 𝑠𝑖 ≔
average emissions in country 𝑖

average income in country 𝑖
 of country 𝑖. 

In the third step, in each year t a cap 𝐶𝐴𝑡 is determined in such a way that the emissions in all countries 

yield the underlying global emissions in the year t (𝐸𝑡): 

∑𝐸𝑡
𝑖 =

𝑖
∑ 𝑃𝑡

𝑖 (∫ 𝑧 𝑓𝑖(𝑧; 𝑝𝑖) 𝑑𝑧 +
𝐶𝐴𝑡

−∞

𝐶𝐴𝑡∫ 𝑓𝑖(𝑧; 𝑝𝑖) 𝑑𝑧
∞

𝐶𝐴𝑡

)
𝑖

=  𝐸𝑡. 

Usually, it is assumed that each person earns a non-negative income. That is why the scaling in the 

second step is possible. However, when global emissions are negative a different transformation, 

which converts an income PDF, which is zero for negative incomes, into an emission PDF that 

addresses negative emissions, must be found. Such transformations are conceivable, but they are not 

indisputable. 
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5 List of abbreviations 

Bt global emissions until the year t (global budget until the year t) 

Bt
i emissions of country i until the year t (national budget of country i until the year t) 

𝐵𝑌 base year (space of time) 

𝐶�̂� weighting of population in the year t in C&C 

𝐶�̃� weighting of population in the year t in LIMITS 

𝐶�̅� weighting of population in the year t in the RM 

�̌�𝑡
𝑖  weighting of population of country i in the year t used to obtain the nation budget  

of country i 

C&C Contraction and Convergence Model 

𝐶𝐴𝑡 cap in the year t 

CDC Common but Differentiated Convergence Model 

CSPM Classical Smooth Pathway Model 

CY convergence year 

𝐸𝐵𝑌 global emissions in the base year 

𝐸𝐵𝑌
𝑖  emissions of country i in the base year 

𝐸𝐶𝑌 global emissions in the convergence year 

𝐸𝐶𝑌
𝑖  emissions of country i in the convergence year 

𝐸𝑡 global emissions in the year t 

𝐸𝑡
𝑖 emissions of country i in the year t 

𝐸𝑡
�̂� emissions of country i in the year t in C&C 

𝐸𝑡
�̃� emissions of country i in the year t in LIMITS 

𝐸𝑡
𝑖̅̅̅ emissions of country i in the year t in the RM 

𝐸𝑡
𝑖_𝑏𝑎𝑢 emissions of country i in the year t in a business-as-usual scenario 

𝐸𝑡
𝑜𝑇𝐻 remaining global emissions in the year t for the countries over the threshold in the year t 

𝐸𝑡−1
𝑜𝑇𝐻_𝑡 emissions in the year t – 1 of the countries over the threshold in the year t 
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�̇�𝑖(𝑧) emission power emission power (the derivative of emissions with respect to time, 

emissions per unit of time) of country i at a point of time z 

�̇�𝐵𝑌+1
𝑖  emission power of country i at the end of the base year 

EPM Emission Probability Model 

𝑓𝑖 income PDF of country i 

𝑓𝑖 emission PDF of country i, scaled PDF 

𝐹 cumulative distribution function, i. e. the probability of an income equal to z or less is 

𝐹(𝑧)  =  ∫ 𝑓(𝑡) 𝑑𝑡
𝑧

−∞
 

𝐹−1 inverse function of the cumulative distribution function F 

𝑓𝑖(𝑧; 𝑝𝑖)  assumed income PDF of country i with parameters 𝑝𝑖 to be estimated 

𝑓𝑖(𝑧; 𝑝𝑖)  estimated emission PDF of country i with parameters 𝑝𝑖 

G-C&C Generalised C&C 

G-Limits Generalised LIMITS 

GSPM General Smooth Pathway Model 

𝑖 country 

𝑚𝑖 mitigation rate (or the decay parameter) of country i 

𝐿 explicit representation of the Lorenz curve 

�̅� parametric representation of the Lorenz curve 

Ľi Lorenz curve of country i 

LIMITS LIMITS Model 

𝑃𝐶𝑌 global population in the convergence year 

𝑃𝐶𝑌
𝑖  population of country i in the convergence year 

𝑃𝑡 global population in the year t 

𝑃𝑡
𝑖 population of country i in the year t 

𝑃𝑡
𝑜𝑇𝐻  population in the year t of the countries over the threshold in the year t 

PDF probability density function 
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𝑃𝑇 percentage 

𝑟𝑖 change rate of the emission power of country i at the end of the base year 

(
𝑑�̇�𝑖

𝑑𝑧
(𝐵𝑌 + 1) �̇�𝑖(𝐵𝑌 + 1)⁄ = 𝑟𝑖) 

𝑅𝐵 global remaining budget 

𝑅𝐵𝑖 remaining budget of country i 

RM Regensburg Model 

𝑠 scaling factor 

𝑠𝑖 scaling factor  of country 𝑖 (
average emissions in country 𝑖

average income in country 𝑖
) 

𝑡 year 

𝑇𝑖 time defined by the remaining budget of country i and the emission power of country i at 

the end of the base year (𝑇𝑖 = 
𝑅𝐵𝑖

�̇�𝐵𝑌+1
𝑖 ) 

𝑇𝐻𝑡 threshold in the year t 

(𝑥𝑗
𝑖 , 𝑦𝑗

𝑖) points of the Lorenz curve �̌�𝑖 of country i, i. e. 𝑦𝑗
𝑖 = �̌�𝑖  (𝑥𝑗

𝑖) 

z point of time (SPM), income (EPM) 
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