more different framework data and corresponding results at: <u>http://results-espm.save-the-climate.inf</u>	0
---	---

framework data (input values here: yellow fields)								
	Gt							
global CO2 budget 2018 - 2100		420		global budget to distribute here:				
land-use change (LUC) emissions from 2018 on	16%	-67	alohal	LUC and ISA emissions are				
international shipping and aviation (ISA) emissions from 2018 on	3%	-13	giobal	subtracted from the global budget because no reliable data are				
global CO2 emissions 2018 - 2019 without LUC and ISA		-73	budget					
global CO2 budget 2020 - 2100 to distribute here	267			emissions for countries used and				
weighting population key in the weighted key	85%		85%		85%		national budget	the country budgets determined here also do not include LUC and US A emissions
				ISA emissions.				
scenario type used for the reference values	RM-5-rad		reference					
minimum annual emissions as a percentage of the country's current emissions		-5%						

reference values for the countries with the highest emissions						share in			reduction	
reference values for the countries with the highest emissions					emissions	per capita	global	accu-	temporary	rate
target year:	2030		2050		2019	2019	emissions	mulated	overshoot	used
reference year:	1990	2010	1990	2010	in Gt	in t	2019	share	in Gt	2020
China	22%	-68%	-124%	-97%	11.5	8	31%	31%	32	-3.0%
United States	-85%	-86%	-105%	-103%	5.1	16	14%	45%	16	-3.6%
EU27	-77%	-75%	-103%	-97%	2.9	7	8%	53%	8	-2.7%
India	183%	-4%	-34%	-49%	2.6	2	7%	61%	2	-1.3%
Russia	-87%	-82%	-104%	-100%	1.8	12	5%	65%	5	-3.9%
Japan	-77%	-78%	-105%	-99%	1.2	9	3%	69%	3	-3.1%

largest national budgets	national	weighted	emissions	scope	Basic idea behind the ESPM
2020 - 2100	budget	key	2019	years	The ECDM consists of two stands
	Gt		Gt		The ESPM consists of two steps:
China	54.8	20.5%	11.5	4.8	(1) National budgets: A prede
India	43.1	16.1%	2.6	16.6	distributed to countries. The ES
EU28	18.7	7.0%	3.3	5.7	weighted distribution key that
EU27	16.3	6.1%	2.9	5.6	the emissions in a base year (her
United States	15.3	5.7%	5.1	3.0	(2) National paths: The ESPM
Indonesia	8.7	3.2%	0.6	13.8	RM 1 - 6 to derive plausible n
Brazil	6.7	2.5%	0.5	14.1	national budget.
Pakistan	6.6	2.5%	0.2	29.6	The weighting of the population
Russia	6.3	2.3%	1.8	3.5	an important parameter when deter
Nigeria	6.0	2.3%	0.1	60.1	In addition to the budget an impo
Japan	5.0	1.9%	1.2	4.3	the national paths is the potential f
Bangladesh	4.9	1.8%	0.1	44.7	is assumed. This is given here by
Mexico	4.3	1.6%	0.5	8.8	emissions up to 2100 as a perce
Philippines	3.3	1.3%	0.2	22.2	emissions. A negative percenta
Ethiopia	3.3	1.2%	0.0	181.9	emissions. 0% stands for ne
Egypt	3.2	1.2%	0.3	12.7	neutrality). If net negative emission
Germany	3.2	1.2%	0.7	4.6	budget is temporarily exceeded
Iran	3.2	1.2%	0.7	4.6	potential of negative emissions i
Vietnam	3.2	1.2%	0.3	10.4	tipping points in the climate syste
Turkey	2.9	1.1%	0.4	7.0	upping points in the criticate syste
Democratic Republic of the Congo	2.6	1.0%	0.0	857.5	Basic idea behind the RM Scena
United Kingdom	2.4	0.9%	0.4	6.5	With the help of the RM Scenario
Thailand	2.4	0.9%	0.3	8.5	determined that meet a given budg
South Africa	2.3	0.8%	0.5	4.6	the assumption about the prope
France and Monaco	2.3	0.8%	0.3	7.2	This approach is particularly use
South Korea	2.2	0.8%	0.7	3.4	political decisions about emission
sum without EU	198		29		The scenario type RM-5-rad used
sum across all countries	267		37	7.3	thus also the reference values si
coverage rate	74%		79%		

efined global CO2 budget is SPM tool offers the use of a includes the 'population' and re: 2019).

tool offers the scenario types national paths that adhere to a

n distribution key is therefore rmining national budgets.

rtant parameter for determining for net negative emissions that the minimum value of annual entage of the country's current age stands for net negative t zero emissions (emission ons are taken into account, the (overshoot). Please note: The s controversial. In addition, a oblematic with regard to the em.

rio Types 1 - 6

o Types, emission paths can be get. The scenario types differ in rty of the annual reductions. eful when it comes to making paths.

here to calculate the paths and hows a convex course of the