Determination of the
free parameter in the RM scenarios 2020 - 2100 |
|
|
selected country: |
EU27 |
weighting P: |
15% |
|
|
|
|
|
|
|
|
|
|
|
target is not met |
|
t / capita |
6,56[1] |
global budget in Gt: |
650 |
|
input value |
determination via "goal seek" |
target value
of "goal seek" |
target is met |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
RM scenarios: |
RM-1 const |
RM-2 exp |
RM-3 lin |
RM-4 quadr |
RM-5 rad |
RM-6 abs |
info actual
change rates |
|
|
|
|
|
|
characteristics of the
scenario |
|
RRt const |
RRt exp |
RRt lin |
RRt quadr |
RRt rad |
RA const |
change
rate 2019 |
average
2018, 2019, 2022, 2023 |
change
rate 2024 |
|
|
|
|
|
|
|
|
|
|
|
|
|
start change rate for the start
year 2025 (RR_SY) |
|
only a negative RR_SY possible |
a positive RR_SY is also
possible
(= increasing emissions) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
RM 2 - 5 |
|
|
|
|
|
|
|
|
|
|
|
|
-6,33% |
-1,88% |
-1,88% |
-1,88% |
-1,88% |
-3,20% |
-4,6% |
-4,5% |
-1,9% |
-1,88% |
|
|
|
|
|
|
|
|
|
|
|
|
initial value[2] |
|
-8% |
10% |
-1% |
0 |
0 |
-116 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
RRt constant |
a |
a |
a |
a |
RA |
|
|
|
|
|
|
|
|
|
|
free
parameters are determined by Goal Seek in such a way as that the budget is
adhered to. |
-6,33% |
10,22% |
-0,42498% |
2,03697E+66 |
|
|
|
|
|
|
|
|
|
|
|
-3,77787E+16 |
|
-0,00031624 |
-0,01535750 |
-78,80[3] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
scenario ∑
2020 - 2100; sheet 'RM' |
Mill. t |
47.806 |
47.806 |
47.806 |
47.806 |
47.806 |
47.806 |
|
|
|
|
|
|
|
budget ∑
2020 - 2100; sheet 'base data'[4] |
Mill. t |
47.806 |
47.806 |
47.806 |
47.806 |
47.806 |
47.806 |
|
Should the potential for net
negative emissions (NNE) be taken into account when setting the TVs? |
yes |
|
|
|
|
|
|
|
|
|
|
|
|
|
emissions
2100 scenario; sheet 'RM' |
Mill. t |
-58,20 |
-58,20 |
-58,20 |
-58,20 |
-58,20 |
-58,20 |
|
|
|
Emin; sheet 'base data'[5] |
Mill. t |
-58,20 |
-58,20 |
-58,20 |
-58,20 |
-58,20 |
-58,20 |
|
|
|
|
|
|
|
|
|
|
|
|
year Emin is achieved |
|
2091 |
2057 |
2067 |
2058 |
2076 |
2056 |
|
|
|
|
|
|
|
change rate
2030 / 1990 |
|
-56% |
-44% |
-46% |
-43% |
-49% |
-48% |
base data |
|
supple-ment |
|
|
minimum values |
proven values |
|
|
|
|
|
|
|
|
|
year emissions neutrailty[6] |
|
2084 |
2056 |
2064 |
2056 |
2071 |
2056 |
NNE |
initial value TV
RM-1 |
|
|
At which level of emissions in
2019 (threshold value; TV)
shall the annual percentage reduction be change into a constant annual
reduction? |
RM 2 - 5: |
101,79 |
Mill. t |
3,50% |
of emissions in 2019 |
-2% |
50% |
TV = Potential for net negative
emissions (-NNE) + supplement |
3,50% |
3,5% |
|
RM-1: |
130,88 |
Mill. t |
4,50% |
4,50% |
85% |
4,50% |
4,5% |
data macro 'finding budget': |
|
|
|
|
|
|
|
proven values |
|
Specified emissions target |
|
0% |
|
Download a comprehensive mathematical description
of the Regensburg Model Scenario Types: |
|
|
|
|
|
Current emissions target |
|
0% |
|
Mathematicel Description RM 1 - 6 |
|
|
|
|
50% |
|
Specified maximum global budget |
|
Gt |
|
|
|
|
|
|
|
|
|
|
85% |
|
Current global budget |
|
Gt |
|
dashboard |
check sum |
0 is ok; 1
not ok |
|
|
|
RM-1 const |
RM-2 exp |
RM-3 lin |
RM-4 quadr |
RM-5 rad |
RM-6 abs |
|
|
budget is adhered to |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
|
|
emissions in 2100 not
positive |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
|
|
no increasing emissions |
0 |
0 |
|
|
|
|
0 |
|
|
check sum |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
|
data macro 'finding NNE': |
|
|
E_2100 is negative but not
equal to E_min |
0 |
0 |
0 |
0 |
0 |
0 |
|
|
Specified emissions target |
|
0,0% |
|
|
|
|
|
|
|
|
|
Current emissions target |
|
0,0% |
|
|
|
|
Specified max. potential NNE |
|
0,0% |
|
|
|
|
Current potential NNE |
|
0,0% |
|
|
|
|
baseline potential NNE |
|
0,0% |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data macro 'finding weighting p.': |
|
|
|
Specified emissions target |
|
0,0% |
|
|
Current emissions target |
|
0,0% |
|
|
Minimum or maximum weight P |
|
0,0% |
|
|
Current weighting population |
|
0,0% |
|
|
baseline weighting population |
|
0,0% |
|
|
global per capita |
|
t |
|
|
country per capita |
|
t |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data macro 'finding budget': |
|
|
|
Specified year of emissions
neutrality |
|
|
|
|
Current year of emissions neutraltity |
|
|
|
|
Specified maximum global budget |
|
Gt |
|
|
Current global budget |
|
Gt |
|
|
|
|
|
|
|
|
|
|
|
|
|
data macro 'finding NNE': |
|
|
|
Specified year |
|
|
|
|
Current year |
|
|
|
|
Specified max. potential NNE |
|
0,0% |
|
|
Current potential NNE |
|
0,0% |
|
|
baseline potential NNE |
|
0,0% |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data macro 'finding weighting p.': |
|
|
|
Specified emissions target |
|
|
|
|
Current emissions target |
|
|
|
|
Minimum or maximum weight P |
|
0,0% |
|
|
Current weighting population |
|
0,0% |
|
|
baseline weighting population |
|
0,0% |
|
|
global per capita |
|
t |
|
|
country per capita |
|
t |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|